A majorization algorithm for constrained correlation matrix approximation
نویسندگان
چکیده
منابع مشابه
A matrix LSQR algorithm for solving constrained linear operator equations
In this work, an iterative method based on a matrix form of LSQR algorithm is constructed for solving the linear operator equation $mathcal{A}(X)=B$ and the minimum Frobenius norm residual problem $||mathcal{A}(X)-B||_F$ where $Xin mathcal{S}:={Xin textsf{R}^{ntimes n}~|~X=mathcal{G}(X)}$, $mathcal{F}$ is the linear operator from $textsf{R}^{ntimes n}$ onto $textsf{R}^{rtimes s}$, $ma...
متن کاملa matrix lsqr algorithm for solving constrained linear operator equations
in this work, an iterative method based on a matrix form of lsqr algorithm is constructed for solving the linear operator equation $mathcal{a}(x)=b$ and the minimum frobenius norm residual problem $||mathcal{a}(x)-b||_f$ where $xin mathcal{s}:={xin textsf{r}^{ntimes n}~|~x=mathcal{g}(x)}$, $mathcal{f}$ is the linear operator from $textsf{r}^{ntimes n}$ onto $textsf{r}^{rtimes s}$, $ma...
متن کاملMatrix majorization Geir Dahl
We study the conceptmatrix majorization: for two real matrices A and B having m rows we say that A majorizes B if there is a row-stochastic matrix X with AX = B. A special case is classical notion of vector majorization. Several properties and characterizations of matrix majorization are given. Moreover, interpretations of the concept in mathematical statistics are discussed and some combinator...
متن کاملWeak matrix majorization
Given X, Y ∈ Rn×m we introduce the following notion of matrix majorization, called weak matrix majorization, X w Y if there exists a row-stochastic matrix A ∈ Rn×n such that AX = Y, and consider the relations between this concept, strong majorization ( s ) and directional majorization ( ). It is verified that s⇒ ⇒ w , but none of the reciprocal implications is true. Nevertheless, we study the i...
متن کاملA numerical algorithm for solving a class of matrix equations
In this paper, we present a numerical algorithm for solving matrix equations $(A otimes B)X = F$ by extending the well-known Gaussian elimination for $Ax = b$. The proposed algorithm has a high computational efficiency. Two numerical examples are provided to show the effectiveness of the proposed algorithm.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2010
ISSN: 0024-3795
DOI: 10.1016/j.laa.2009.10.025